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ABSTRACT

Let {xs(-)} be a sequence of solutions to an ordinary
differential equation with random right sides (due to input
noise {ie(-)}) and which converges weakly to a diffusion x(°)
with unique invariant measure u(+). Let u(t,*) denote the
measure of x(t), and suppose that u(t,*)> u(+) weakly. The
paper shows, under reasonable conditions, that the measures of
xs(t) are close to u(+*) for large t and small €. In ap-
plications, such information is often more useful than the simple
fact of the weak convergence. The noise Ee(') need not be
bounded, the pair (xe(-), £(*)) need not be Markovian (except
for the unbounded noise case), and the dynamical terms need not
be smooth. The discrete parameter case is treated, and several

examples arising in control and communication theory are given.

TThis research was supported in part by the Air Force Office of
Scientific Research under AFOSR-76-30638, in part by the National
Science Foundation under NSF-Eng. ,77-12946-A02, and in part by
the Office of Naval Research under X\00014-76-C-0279-P0004.
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I. INTRODUCTION

Many results are available concerning the weak convergence
of a sequence of processes {xe(-)} to a diffusion x(e¢) (with
values in Rr), where {xec-)} are the solutions to ordinary
differential equations with random right hand sides [1]-[5];
e.g., where %F = Fe(xe,€€) for some function F€(°,') and a
"wide band" noise process 56(-). For small € > 0, the weak
convergence basically gives us information on the approximation
of xe(f) by x(+) on arbitrarily large but still finite time
intervals. In applications to control and communication theory,

information concerning the asymptotic behavior - for small ¢,

but for "large" t is often of much greater interest. For ex-
ample, we want to know how well the asymptotic distributions
(the distributions at arbitrarily large times) of the xec-)
are approximated by the (say) invariant measure of x(+) for

small €.

This pfoblem was discussed in [2, Section 6] and, roughly

speaking, a result of the following type was obtained. Let §(+)

. . . . €
be a stationary finite state jump Markov process, define & (t) =

5(t/52) and for smooth functions F(+,*), G(+,*), G(+), where

EF(x,E(t)) = 0 = EG(x,5(t)), define x (+) by

(1.1) x% = F(x,65)/e + G(x,%) + G(x), x°(t) €rF

Then, if xE(O) converges weakly to x(0), {xe(-)} converges

weakly to a diffusion x(+) whose generator ¥ is defined by

(1.2)  Z£(x) = ££0)8(x) + f E(£] (X)F(x,5 (£)))1F(x,5(0))dt
0

POP-T I R0
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Suppose that x(*) has a unique invariant measure u(+),
and let there be a smooth Liapunov function 0 < V(x) + « as

[x] > », and a Y > 0 such that
(1.3) £V(x) < - YV(x), for large |x]

Then, for small ¢, (xe('), Ee(-)) has an invariant measure
ve(-) whose x-marginals ue(-) converge weakly to u(+) as
€+ 0 [2, Section 6].

We are interested in results of the same type, but where
ﬁe(-) might not be Markov - or even bounded (Gaussian, for
example), and where F(+,*) and G(+,+) might not be smooth.
Also, in many interesting applications (1.3) does not hold (e.g.,
in many cases where F(e,+), G(-,+) and E(-) are bounded).
Thus, for our problem {xe(-), 55(')} might not have an invari-
ant measure, even for small € > 0, Furthermore, we are also
interested in the case where the evolution of Ee(-) depends on
xe(-). Also, [2] does not address the question of the distribu-
tions of xs(t) being close to u(+) for large t and small
€ and arbitrary initial condition, a problem which is important
in applications. The basic techniques used here are similar to
those in [2]; both heavily depending on the use of "averaged
Liapunov functions."

Section 2 contains the basic approximation theorem, but using
the condition (AS) which is not usually directly verifiable. A
verifiable condition for (AS5) appea:s in Section 4.

Since our interest is only in the asymptotic properties of the

CMnis . rmriem




measures of the {x€(~)} for small €, we assume weak convergence
(A4) - preferring to keep close to the main purpose. In any case,
many xnown sets of conditions imply the weak convergence (see
[1]-[5] or the conditions in Section 4). Section 4 also discusses
the changes required when F(+*,*) or G(+,*) are not smooth, a
case which is important in many applications. The "unbounded"
noise case is dealt with in Section 5, some examples are dis-
cussed in Section 6, and in Section 7 we treat the discrete param-
eter case, when the noise might be 'state' dependent. Section 3
contains a result that is useful in the proof of Section 4.

For future reference, we note that if §&(<) is Markov, it

is sometimes convenient to write (1.2) in the form
(1.4) ££(x) = £1(x)E(x) + f E(£1(x)Eg () F (x,6 (£))),F (x,§ (0))ds
0

The advantage of (1.4) is that if F(+,¢) is not differentiable,
then the derivative in (1.2) might not exist, but that in (1.4)

might exist for t > 0, and we can weaken the conditions required

on F(+,*), and even on G(-,°).




2., THE BASIC CONVERGENCE THEOREM

Assumptions

Al. x(*) 1is a Feller diffusion process with continuous coef-

ficients and a unique weak sense solution on [0,®) for

each intial condition.

A2. x(*) has a unique invariant measure u(*) and p(x,t,*),

the measure of x(t) when x{0) = x, converges weakly

to u(<) for each x, as t » =.

A3. . The convergence in (A2) is uniform in compact x-sets; i.e.,

for each £f(+) € &;, the space of continuous bounded

functions on Rr, Exf(x(t)) > Euf(x(O)) uniformly in x

in compact sets, where Eu denotes expectation with respect

to the stationary measure of x(*). ((A3) need only hold for

the functions of interest in the Theorem.)

- .

€
Ad. x () > x(+) weakly (initial condition x(0)) “if xe(O) >

x(0) weakly in DY[0,«).

AS. There is an € > 0 such that {xe(t), 0 < e < 60, t >0}

is_tight. (See Theorem 3 for a verifiable criterion for (AS).)

Remark én (A3). Condition (A3) is implied if B is weakly
stable in the sense of Liapunov. More specifically, let {fn}
be a sequence of continuous and uniformly bounded functions, each

with compact support such that Mg * Hy weakly (as o = 0) is
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equivalent to J fn(y)ua(dy) > f fn(y)uo(dy) for each n. Let

u(t,*) denote the distribution of x(t). Suppose that for each
§ >0 and f, ..., fm, there are € > 0 and n < such
that

|[es0m0,an - [g,omn]<e, i <n
implies

[esomee,an - [ om@n]< s, 1om a1t t20

Then (A4) holds.
satisfies an ordinary differential
at a point Xg»

usual Liapunov stability of X

Lemma 1. For any integer m,

0 < Al...

valued random variables.

and let 0 = A < Am' Le

Then

Ex(o)f(x(t + Ai)’ i<m) >

uniformly for x(0)€ S, as t

The result is a consequence of
omitted.

in Theorem 1 are the same as those

Theorem 1. Assume (Al)-(A5).

In the completely degenerate case, where

> o,

The uniformity, in particular, requires (A3).

Then for each f£(*)€ 2%

x(*)

equation and ¥ 1is concentrated

then the above criterion is equivalent to the

f(-)e gmr+r' Assume (Al)-(A3)

S denote a tight set of RT

Euf(x(Ai), i <m)

(A1)-(A3), and the proof is
The Ai

in Lemma 1.

and

m+r




e

-

§ > 0, there are to(f,é) < o and Eo(f,d) > 0 such that for

all t > to(f,é) and € < €O(f,5), and any sequence {xe(-)}

which converges weakly to x(+),

(2.1) |Ef(x(t + 80, 1 <m) - E f(x(8;), i <m)|< g

Let &£(-) be Markov and (x“(+),£%(+)) Markov aad have an invari-

ant measure ve(-). Replace (AS) by: There is a sequence TE* o

(T can depend on the initial condition) such that (A5) holds

€

for t > T.. Then {ve(-), small €} is tight and its x-marginals

{uE(-)} converge weakly to wu(e).

Remark. The theorem implies that the convergence as t + o in

(2.1) is uniform in € for small €, a fact which is important

in applications. In applications, it is often possible to prove

results such as %im Exlxett)li K, where K does not depend on
oo

€ or Xx. Then if {Eet-)} 1s bounded, the replacement for (A5)

in the last paragraph holds.

Proof. Suppose that (2.1) is false. Then there is a subsequence

€ >0 and a sequence {te} + such that

|
(2.2)  [Ef(x"(tg+ 8), i <m) - EE(x(4),3 <m)| > 650 |, ]
:




We will find a further subsequence, also indexed by €, which vio-
' lates (2.2). Fix T > 0. By (AS), we can choose a further sub-
sequence such that {xe(ts- T)} converges weakly to a random
variable x(0). By (A4), {xe(te- T + )} converges weakly to

x(+) with initial condition x(0) and

(2.3)  EE(xT(tg- T+ T+ 8;), i<m) > EE o f(x(T +28;), 1 <m.

By (AS), the set § of all possible x(0) (over all T > (0 and

weakly convergent subsequences) is tight. By Lemma 1, we can take

T 1large enough such that

(z2.4) |EE f(x(T + Ai) s 1 <m) - Euf(x(Ai], i<m)| < ¢/2.

x(0)

Equations (2.3) and (2.4) contradict (2.2).

The proof of the last assertion is similar to the last part of

the proof of Theorem 4 and is omitted.
Q.E.D.




-8-

3. A LIAPUNOV FUNCTION CRITERION FOR (3.1)

(3.1) U {x(t), t » 0, x(0) = x} is tight for each compact B.
X€EB

To prove (3.1), we will require condition (A6).

A6, There is a continuous Liapunov function 0 < V(x) » « 1s

x| > = and a AO and @y > 0 such that V(x) < - @

0
for x¢ QO = {x:V(x) < KO}. The partial derivatives of V(-)

up to order 2 are continuous,

Theorem 2 is proved partially because the proof is a prototype

of the technique used later to verify (AS).

Theorem 2. Under (Al) and (A6), condition (3.1) helds.

Proof. (A6) implies that Q0 is a recurrence set for x(-) [6].

We suppose w.l.o.g. that min V(x) = 0.
X
Let kz > Xl > XO and define Qi = {x:V(x) < Ai}. Let T

denote a Markov time such that x(TO) ¢ QO’ and define Tl =

min{t:t > Ty x(t) € QO}. Then ([6]) an application of Ito's for-

0

mula yields that for any Markov time t > Ty for which

Ex(rg(t = o) <7
tﬂTl
(3:2) By(r)VX(E 0 1) - Vx(F)) < EX(TO)J LV (x(s))ds
T
0
<7 Cofx(ry (BT To)

3
—
-

(3.3) EX(TO)(TI' TO) < V(x(ro))/ao s px(ro){Tl < »}

™




(3.4) PX(TO){leggto V(x(s)) > A} < V(x(Ty))/A

Define T0 = Al/ao.
To get (3.1), define a sequence of Markov times {On} as

follows. For n =1,

Q
n

min{t:x(t) € QO}
For n > 1,

= 3 o - -
o, = o -1t To if x(t) € Q1 = Q1 8Q1 for te[on_l,cn_1+ TO],

o = inf{t:t > o _;, x(t)€ 3Q;} if x(o) )€ Q] but

x(t)€ 3Qy for some te€fo _4, 9 _¢* TO] .

o = inflt:t > o ;, x(t3€ Q) if x(o, )¢ Q)

For n > 1, Ex(On)(on+l- On) < T0 and Px{o1 < w} =,1, In fact

if the set B in (3.1) is contained in Q,, then  sup E 0, < XZ/GO
x€B X - 7

by (3.3). Fix & > 0. For each k and t define j(t,k) by

% (t,4)T MAO3Pr (o ) TE 2 Og) < 874D

Define the intervals A =1, ...,k.

i = 195,10+ (1-1)7 e k)il B
Then for A > Al,

k
(3.5) P AV(x(£)) 2 A} < P {o5ey 4y >t} +j£1 PX{ZEK. V(x(s)) > A}
1

+ 8/4.

[T T

b

L memasea

PR ERS SN




We can choose

k

such that the first term on the right hand side

is < 6/4 for all x€B. Then, by (3.4), we can choose A such

that the sum is

(3.1) holds.

< 8/4 for all x. Since V(x) » = as |x| + =,

Q.E.D.

[
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4. An Averaged Liapunov Function Criterion for (A5).

In this section, we use the model (1.1) and a strong mixing
condition on & (+¢). The development should be viewed as an il-
lustration of a general technique. The mixing condition is too
strong for many applications, and other conditions are consid-
ered in Section 5. The mixing condition is used simply to assure é
certain bounds. In specific cases, a very similar development
can be carried through under other conditions on the noise, and
the same bounds shown. Also, (see, e.g., Example 2 in Section 6), f
a very similar development can often be carried through for equa-
tions of forms other than (1.1). The smoothness requirement in
Condition (B2Z) is weakened in the remarks after the proof. 1In
order to get the necessary inequalities for any Liapunov function
based approach, an assumption such as (B4) seems to be required.
The conditions hold in numerous cases of interest.

We will use

Bl. §&(¢) is a bounded, right continuous, stationary ¢-mixing
00’

process [7] with I¢ 1/2(1:)c1t <
0

B2. F(*,*), G(*,+) and G(+) are continuous, RY valued

functions whose growth (as |x| + @) is O(|x|). The

partial derivatives of F(+,§) up to order 2 (and of G(+,§)

up to order 1) are bounded uniformly in x,&, and EF(x,%)

= 0 = EG(x,8).




B3, There is a diffusion process x{*) with differential genera-

tor & defined by (1.2), and which satisfies (Al)-(A3).

Also, (A6) holds, .but the partial derivatives of V(-) up

to order 3 are continuous.

B4. There are constants K such that, uniformly in x,§,

(4.1a)

(4.1b)

(4.2)

(4.3)

(4.4)

IVIOG(x,E) ] + [VIOIF(,E)] < (1 + V(X))
| (VECOF(x,6))) F(x,8)] < K(1 + V(x))
| (VE(x)G(x,6))) Ux,8)| < K(1 + |£V()])

for U = F,G,G

+

PV (OE(x,8)) ) U(x,E) < K + |#V(x)]), U = G,G

PV, F(x,8)) F(x,8)) U(x,8)1 < KA + [£V(X)]) ,

U= F,G,G

Note that here and in the sequel the value of K might change

from usage to usage.

~

Define the differential operator A® and its domain EHRE)

as in [4],[5], [8]. The method of use of A° is similar to that in

[4] and the averaging method is similar to that in [2], ([4], [5].

Theorem 3.

Under (Bl)-(B4) and the tightness of {xe(O)}, condi-

(AS5) holds.
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Proof. For each integer N, define Sy = {x: [x| < N}. Let
bN(-) denote a function with values in [0,1] and satisfying

bN(x) =1 in S and equals 0 1in R' - SN+1’ and the partial

N
derivatives up to order 3 are bounded uniformly in N,x. Define
VN(-) = V(‘)bN(-). The V(+) 1is 'truncated" because we cannot
apply A® to unbounded functions without additional conditions.
V(+) 1is the Liapunov function which is to be "averaged,' and KE
plays the role of a '"differential"” generator for x (). Let

EE denote expectation conditioned on Ee(s), s < t, xE(O). We

t
x(+))

have (writing x

€
(4.5) Ry = vy 00 [ L) 4 6ex,E%(n)) + 6]

€ . € € €
To average out V&’x(x) G(x,& (t)), define VN,O(t) = VN,O(X (t),t),

where

€
vg,o(x,t) = V&’XEE G(x,& (t + s))ds

Ow—— | 8

By changing variables s/e2 + s and using (Bl) and (4.1), we get
(the X do not depend on N)
(4.6) |V§’O(x,t)| < e K@+ V(x)), x€Sy
€ A€ . €
We have VN 0(-) €2 (A7) and (write x = x (t))
’

ASVY (1) = = Vi L (x) G(x,E5 (1))

' €
) J.ds {0 6,85t + 0 }{E00 + BT + Eeud ()
0
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By changing variables s/e2 + s and using (Bl) and (4.2), we get

that the integral is bounded by

(4.8) € K(1 + [£V(x)]), xE€S,

We now proceed to average out the V& x(x) F(x,Ee(t))/e com-
’

ponent of (4.5). Define V§ 1(t) = V; 1(xe(t),t), where

(x) Ef F(x,6°(t + s5))ds/e

E 1
Vn,1 (1) = J VN, x
0

By (B1l) and (4.1), and the change of variables s/s2 + s, V§ 1(x,t)
’
satisfies the bound in (4.6). Also, VN 1(°) Ega(Ae) and (write

x = x°(t))

(4.9) APy j0ot) = - VR L) F(ES(e)) /e +

£ , €
ds {vy, 00 b RO L)} {FOGE 0D+ 60x,6% (o))

X

O 8

+G (x)}

By (Bl), (4.3) and the change of variables s/e2 + s, the terms
in (4.9) involving G + G are bounded by (4.8).
The remaining term in (4.9) must now be averaged out. Define

Vy,2(8) = Vy ,x5(2),8) by




x = x°(t))

(4.11) Rsvﬁ 2(x,;) = - (inner integral of (4.10) evaluated at
: _ € x>
- T = 0) + (Vy ,(x,))) X

By (Bl1), (4.4), and the usual change of variables, the last term on
; the right side of (4.11) is bounded by (4.8).
2 2
i Define Vg(x,t) = Vy(x) + I Vg .(x,t) and Vg(t) = Vy(x°(t),t).

i=g fo? ; ‘

”‘ Define Vekx,t) = V:kx,t). For x€SN,

(4.12a) [V (x,t) - Vy(x)] < € K(1 + V(x))

~EL,E € [
(4.12b) ATVE(t) = LVG(xT (1)) + 0(e)(1 + | Vx (D))

Also, Ve(x,t) > - Kg,

(4.10) v§ ,(x,t) =

o——8

C BV () FOE5(tes 1)) 1R x5 S (een)) }ye?

By (Bl), (4.3) and the change of variables s/e2 + s, T/€

SN- Q0 for small € > 0,

Let T

fine

0

Y

™N

inflt: t > T, x“(tXQy) ,

inf{t: xe(t) € SN}

2

-5

T

ar [ as {0 Bf FOx,85(ees01))) 1P (6,55 (1))
| _

p Vz ,(x,t) is bounded by (4.6). Also, v; (%) gf@(ﬁe) and (writing

and the expression in (4.12b) is < - GO/Z in

denote a stopping time such that xE(TO)¢QO and de-

T

MAL




Then, for small enough € > 0, and T any stopping time satisfying

T2 7% and E(T - Tn) < w,

£

€ € € €
(4.13) Efo"TN Vg (TNTNT) L TATNT) - V(xS (T Ty, ToNT)

1

TlnTNnT
€ ~E E €
= E AV, (x (s),s)ds
. I £(x5(s),9)

TOHTN

€

¢4
0
oz ErontNltflﬂTNnT)-(tontN)]

€ . .
The N subscript on VN can be dropped, since the x- argument is
always in SN‘ Now, let N - « (hence Ty > = since by (B2), there
is no finite escape time for any € > 0). Then let T - », Then

(4.13) and the fact that V- (x,t) > - Ke yield (for small )

(4.14) B (1 - 1)) < 2[VE(x"(1),7,) + Kel/u,

A

3V (19)) + Kel/o,

and

’

- Ke + APf { sup VE(Xg(S),S) > A} < IVE(xe(IO),T)}
0 Tlisito Q

from which we get

ZV(x?(ro)) + Kt

(4.5) P, { sup  V(xS(s)) > A} < T .
0 leszro

Inequality (4.14) implies that the mean travel time from Q; to

aQo for xe(:) is bounded by S(Al + KE)/aO. The proof is
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completed as in Theorem 2 with (4.14) and (4.15) replacing (3.3)

and (3.4), respectively.
Q.E.D.

Remark on Theorem 3 for non-smooth F and G. Let &(<) be

Markov with transition function P(§,t,T') and invariant measure
P(T). Then even when F(-,§) and G(+*,§) are not suitably dif-
ferentiable, the constructed V;(}) might still be in Qﬁﬁe)

and the bounds (4.6) and (4.8) might hold. For this non-smooth
case, we write the derivative which appears on the right side of

(4.7) as

@16 [ v 0 seEp PET®), S, ]
’ b

This gradient might exist for s > (G, even though G(+,§) 1is not
smooth. Similarly for the other terms. In particular write the

integrand in (4.10) in the form

S

@any [[[vg, 00 Fey ey, 7 daz)]; F(x,81) PG(8),—7, d5)

. ij&’x(x) P8 PGy, 5, daz)]; F(x,6;) P(d§;)

In any case, if with these representatives, the constructed V;(-)
is in QKRE) and (4.6) and (4.8) hold, then Theorem 3 continues to

hold, if F(e+,*) and G(-,*) are measurable but do not satisfy the

continuity and differentiability assumptions in (B2).

etk
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5. Unbounded Noise

Suppose that (1.1) is used and that the &(+) there is Markov,
but unbounded. Then Theorem 3 is not directly valid. But, fre-
quently in applications cases arise which can be treated by essen-
tially the same proof, due to the special way in which the noise
enters, and the properties of the dynamical terms. We now describe
one such case - which was abstracted from the situation arising in
several examples when one tries to apply the method of Theorem 3.
Many important examples fit the situation to be described. See, for
example, Example 2 of Section 6, which is typical of a large class
of such cases.

We suppose that the V;(f) constructed in Theorem 3 are in

SZ(KE) for € < €95 where €5 > 0, and that (1.3) holds and that
there are random variables gECt), Ee(t), integers p,q and func-

tions V(-) and V(+) satisfying (5.1). For the first two lines

of (5.1), let XESy. Let ve(t,-) denote the measure of (xg(t),ﬁe(t))

and let Eo denote expectation conditioned on (ES(O),XE(O)).

RVR(x,0) + V() + 0(8)(1 + V(x)) + 0() §°(t) V(x,1)

Ve(x,t) + Vy(x) + 0(e)(1 + V(x)) + O(#) Ee(t) Vix,t)
5.1y N N

sup EIE5 ()P < =, sup EJE(t)]|% < =
t,¢€ t,¢€

1Vex,t) PPl 0v(x)) = 17x,t)199° 1 gor 1arge |x| -




Example 2 in Section 6 describes an important class where
these conditions hold. For another example, consider the case
where &(+) 1is Gauss-Markov and F(x,§) = Fo(x)ﬁ, C(x,§) = Go(x)E
and Fo(x), Go(x) as bounded and smooth and V;(x) G (x) < - YW(x)
+ K, vy > 0.

We shall need

Ci. G(+), F(*,*), G(+,*) are measurable and are O0(|x|) for

large |x|, uniformly tounded §&-sets.

C2. For the given sequence {xe(o)}’ sup EV(xe(O)) < e,
€i€0

C3. sup E|&(t)] < =, For small ¢, {xe(-),ge(-)} and &(+) are
t

Markov-Feller processes with right continuous paths and homo-

geneous transition functions.

C4. There are Y > 0 and K.< » such that <V(x) < - yYV(x) + K

1 1

Remark. Condition (C2) facilitates the proof but is not necessary

for the result.

Theorem 4. Assume (Cl)-(C4), (A4), (B3), (5.1) and the conditions

above (5.1). There is an € > 0 such that for € < &, (x€(~),

ge(;)) has an invariant measure vs(f). The x-marginals {ue(-)}

of any such sequence of invariant measure converge weakly to u(¢)

as € + 0. Also (A5) and the conclusions of Theorem 1 hold.

4



Remark. If F(+,*) or G(*,*) are not smooth, see the remark for
Theorem 3. The theorem is an extension of the result in [2, Sec-

tion 6] in that both use (C4).

Proof. Define T, and Ty as in Theorem 3. By the hypotheses,

for any positive T,

(5.2) EVE (x®(TnTy), TaTy) - EVE(x°(0),0)
Ty

E J ASVE(x®(s),s)ds
0

A

TNnT
E j N levx®s)) ¢ 0Ce) + 0(e)V(xE(s))
0

+

0(e) 1€ (s)V(x®(s),s)|1ds

By (Cl1), as N > « we have > © w.p.l. The limit as N » «

of the right side of (5.2) is bounded above by

T €
(5.3) - YJO EV(x (s))(1 + O(e))ds

+

T N -
0ce) JO B2 L/P [V (x®(s),5) [P/PTIEMPIES () P s + KT

A

T €
- Y(1 - 0(¢e)) JO EV(x (s))ds + ZK,T

for some real Kz.

=
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Similarly the limit as N > » of the right side of (5.2) is

bounded below by

(5.4) EV(x“(T)) (1 - 0(€)) - K,

for some real K3. Thus for some Y, 2 0,

€ [T €

(5.5) EV(x (T)) < Kz- 7 ] EV(x~(s))ds
0
+ ZKZT.
By (5.5), EV(x“(T)), T >0, € < some small &} is
bounded by
-A,T

€ 1

(5.6) EV(x (T)) < Kge + 2K, /A

This and (C3) and a Theorem of Benes [11] imply that for small €
there is an invariant measure VE(') for (xe(-),ie(-)) and the
first assertion of the Theorem is proved. By (5.6), the x-marg-
inals  {#°(-)} of {v°(:)} are tight. By this and (C3) so is
{VE(')}. Also, by (5.¢) and the provnerties of V(-),

{xe(t), € < gy, t > 0} is tight. Hence (AS5) and the conclusions
of Theorem 1 hold.

Now, we prove the middle assertion of the Theorem. Let VE(')
be the measure of (XE(Q), EE(O)), and let x(+) denote
the weak limit of any weakly convergent subsequence {xe(-)}. By
the invariance of ve(-), the distribution of xe(t) is ue(t)

for each t. Thus, x(t) has the same distribution for each t.

- —




T R+ e i e iabbis b SO S

This must be #(+), by the uniqueness of the invariant measure
u(+). In fact, if {V;(')} denotes any sequence of invariant

measures for {xe(-),€€(-)} for which the x-marginals {ui(-)}

are tight, then we get the same result.
We complete the proof by showing that any sequence {vf(-), ;

small €} of invariant measures must be tight. Suppose that.

{V;(')} is not tight. Then for some sequence €+ 0 there

are N€ > o and a § >0 and (for each € 1in the sequence)

ST SRS

£ .
a sequence tn > ® asn->® and an X, for which

(5.7)  PUxT(t0)] 2 N [xT(0) =x.} > 6

(The measures of Ea(t\ are all the same, since §F(O)A
= £(0). and the £ -marginals of vi(ﬂ are all the

same.) But (5.6) implies that Iim E[V(xe(T))lxe(O) = x.) 2 ZKZ/XI, |

tro

a bound which depends neither on X, or on €. This contradicts

the assertions that NE +~© as € > 0 and ti + ® 3gg n + o,

Thus {vf(~)} must be tight.
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6. Examples

The two examples below arise in applications to control and
communication theorv. They were chosen to illustrate the general
results and applicability of the methods of Theorems 1,2,4 under

slightly different conditions.

1. Adaptive antenna arrays. Let v(+) denote a complex RT

valued, stationary, bounded and right continuous stochastic
process and define M(t) = v*(t) v'(t), ME(t) = M(t/€?), M = EM(t),
where * denotes the complex conjugate. Let S be a complex
Rr-valued quantity and GO’ G, T positive real numbers. Let W(-)

and W(+) denote the solutions to

2 - - *
™o+ (GM + I)W =G4S
» * -
o+ (GMT+ I)W'= GS' , W(0) = W (0)

Such equations arise in the study of adaptive antenna arrays [14].
The function &(t) converges as t -+ «., Define xe(-) = (wec-)
- W(+))/e. Then

- € -
6.1) x°= - L i+ nx® Sanx® & My %oy -0,

where M= M®- M. The asymptotic properties (large t, small €)
are of interest.

Define the operator A: by

. 2 ) )
A, £(x) = £ Jo W' (t) ESM'(s)f,  (x)SM(0)W(t)ds ,

T

Let SM(+) satisfy (Et denotes expectation conditioned on

vip), p < t)




-24-

J IEtGM(t + s)]ds < K, all w,t,
(6.2)

J dsj drlEtﬁM(,t + s)SM'(t+ s + 1) - EOM(t + s)M'(t + s + r)!_<_K ,
0 0

all w,t

Then Xs(f) is tight and converges [12] weakly to the nonhomo-

. geneous diffusion x(+) with generator ¥ given by

6.3 G+ A0ty = L L £ O ¢ /T A, t)

As t » =, the sequence of measures u(t,*) of x(t) converge
weakly to the invariant measure of the stationary diffusion which is
obtained when W(m) replaces W(t) in the definition of A:. De-
fine V(x) = x'x. Then Theorem 3 holds with the condition (6.2)
replacing the mixing condition. The proof goes through owing to

the fact that GMe(-) appears linearly in (6.1).

Example 2. Weak convergence of (6.4) was investigated in [13].

x°= H(xs) + Dye

y©= Lgy(s + n°- J(x)) /e, x°(0) = x; .

In (6.4), ga(-) is an approximation to a "hard limiter;" a func-
tion g(+) is a hard limiter if g(u) = sign u,u # 0. Such
functions occur frequently in applications in control and communi-

cations. Instead of working with g(¢) directly, we worked in
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{ [13] with the approximation ga(°), where g, (0) = 0, sign g, W)
= signu, g,(u) = signu for lul > a, Iga(u)lf_l and & (u) < K/o
for |u] < @. The process s(*) 1is a bounded right continuous
signal which is a Feller-Markov (and ergodic) process with a

homogeneous transition function. Let ne(t) = z(t/ez)/e, where

z(*) 1is a scalar valued Gaussian process with correlation function

oze-at, a > 0. With H(s) continuous and J(+) twice continuously

differentiable, {xe(-)} is tight and converges weakly (as € - 0,
1 1

@ > 0 such that €%/a? > 0) to the x(+) of (6.5), provided that

(6.5) has a unique solution on [0,~) (in the weak sense) for each

initial condition. Now, assume this uniqueness. Assume, in addi-
tion, that J(+) and its partial derivatives up to order 2 are
bounded and continuous, and that H(x) = O0(!x]) for large Ix]|.

Let V(x) = x'Qx for Q>0 and suppose that V;(x) H(x) < - vV(x)

+ K for some Y > 0.

dx = H(x)dt + LD Li_%flﬁﬁtl\/fg'dt . LD ZZ;nZ i |

x(0) = Xy s B(¢) = standard Brownian motion.

. ..

(6.5)

e s Araa

The perturbed Liapunov function V§(-) required for this case
can be constructed in a very similar way to that given in Theorem 3.

fe’N is constructed in [13].

See, e.g., the way the analogous
We then get the situation of (5.1), where G(x) and V(x) are
o(|x]), and £°(t), £°(t) can each be taken to be of the form
]z(t/ez)ls. The O0(e) in (5.1) need to be replaced by O(F&IG%).
But if we let & » 0 as € » 0 such that €%/a%s 0, Theorem 4

remains valid if x(+) satisfies the conditions of that theorem.




This example is a simple form of a large class that occurs
naturally in control and communication theory, where the noise
is unbounded, the dynamics non-linear and to which our method
can be applied. The general ideas of Theorems 3 and 4 remain
valid, but the actual details of proof might depend on the spe-

cial conditions of the application.

-

s MR el
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Discrete Parameter State Dependent Noise Case.

The method of Theorems 1, 3 and 4 is readily extended to the
discrete parameter case, and we will outline the idea for a case

where the noise depends on the state. See [9], [10] for examples

. €
of such a case. Define {Xn} bv

€

(7.1) X o1

€ = € € € £ ., €
= X-+ eG(X") + eG(X,E ) +YEF(XE ) + o(e) ,

where {Eg} is a bounded noise process. In many important cases,
{£-} depends on {X'} ([10]). We model this in the following
way. Let {Xi,ii} be a homogeneous Markov process with the one

step marginal transition function written as

PE(E,1,T|x) = PES €TIXf = x,E = £}

For each x, define the bounded chain {Ee(x)} by the transition

function defined recursively by

P, ,r1x = [PRE,5 - 4,06 1x) PEGELTI)

Let {£%(x)} have a unique invariant measure P (+) and let £°

denote expectation of functionals of the chain under the station-
ary measure.

The comments below are formal, and it is implicitly assumed
that the indicated derivatives and sums exist. Suppose that there
are continuous aii(') and F(*) such that for each x the
limits (7.2) and (7:3) exist for smooth f(*). (The idea is sim-

pler for the case of non-state dependent noise, but owing to the




AL AN

-28-

numerous applications, it is worthwhile to present the more general

case.)

.2 L ESE(F(x,6, ) 165 00) ], Flx,E,00) » B(x)

EF" (x,65(0)) £,,(x) F(x,65(x))

™)

(7.3) +

P o)
e 8
—

SR (x,65(x)) £, (x) Flx,550x)) »

7 Ioa ) £ ()

X.X.
1

i,j J
Define ¥ by
1 3% - X 2
(7.4} Z=5 1 aij(x) %, L R () ¢ 6L (X)) g
i,j ity i i

Let xe(-) denote the niecewise constant process with values X; on
[en,en +€). Under some additional conditions, {xs(-)} converges
weakly to the diffusion x(+) with generator ¥[9,10].

For the discrete case, the operator A is defined on the
set of functions % which are constant on [ne,ne + €), and
{X§,j < n,E?,j < n} = 5’: measurable at ne. For f(-)€.%, ASf s
defined by A“f(t) = [Eff(t +c) - £(t)]/e.

Given a Liapunov function V(+), the perturbed and truncated
Vﬁ(-) are found by a method that is very similar to that used in
Theorem 3, but with summation replacing integration, and a trunca-
ted Taylor series expansion rather than a differentiation used to

*€.E

get the A VN i(-). Perturbed test functions are constructed in
L
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[9], [10] and are used in the proof of the weak convergence men-
tioned above (following the method of [5]). The V;,i(°) would

be constructed just as these perturbed test functions were, but
using test function Vy(+). If the Vg(-) - V(-) and AV(-)

- ¥V(s) satisfy the bounds (4.6), (4.8) in the set SN’ then the dis-
crete parameter analog of Theorem 3 holds. Theorem 1 holds in any
case if the {xe(')} of this section satisfies the conditions of

that theoremn.
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